InterviewSolution
Saved Bookmarks
| 1. |
Prove the following by using the principle of mathematical induction for all `n in N`:`41^n-14^n`is a multiple of 27. |
|
Answer» Let ` ((41)^(k)-(14)^(k))/27 = p." "`…(i). Then, `{(41)^(k+1)-(14)^(k+1)}= (41)^(k+1)-(41)^(k)*14+(41)^(k)*14-(14)^(k+1)` ` = (41)^(k)(41-14)+14{(41)^(k)-(14)^(k)} = 27 xx (41)^(k)+14xx 27p` ` = 27 xx [(41)^(k) + 14]`. |
|