1.

Prove the following by using the principle of mathematical induction for all `n in N`:`1. 2+2. 2^2+3. 2^2+...+n .2^n=(n-1)2^(n+1)+2`

Answer» `P(k): 1*2+2*2^(2)+3*2^(3)+…+k*2^(k)=(k-1)*2^(k+1)+2`. …(i)
Now, `{1*2+2*2^(2)+3*2^(3)+…+k*2^(k)}+(k+1)*2^(k+1)`
` ={(k-1)*2^(k+1)+2}+(k+1)*2^(k+1)= 2k*2^(k+1)+2 = k*2^(k+1)+2`.


Discussion

No Comment Found