1.

Prove the following by using the principle of mathematical induction for all `n in N`:`(1+3/1)(1+5/4)(1+7/9)...(1+((2n+1))/(n^2))=(n+1)^2`

Answer» `P(k):(1+3)(1+5/4)(1+7/9)…{1+((2k+1))/(k^(2))}=(k+1)^(2)`.
Now, `(1+3)(1+5/4)…(1+(2k+1)/k^(2)){1+(2(k+1)+1)/((k+1)^(2))}`
` = (k+1)^(2) xx ((k+1)^(2)+(2k+3))/((k+1)^(2)) = (k^(2)+3k+4) = (k+2)^(2)`.


Discussion

No Comment Found