1.

Prove the following identities :sin2θ – cos2 ϕ = sin2ϕ – cos2θ

Answer»

Taking LHS = sin2 θ – cos2 φ

=( 1 – cos2 θ) – (1 – sin2 φ) [∵ cos2 θ + sin2 θ = 1] & [∵ cos2 φ + sin2 φ = 1]

= 1 – cos2 θ – 1 + sin2 φ

= sin2 φ – cos2 θ

= RHS

Hence Proved



Discussion

No Comment Found