

InterviewSolution
Saved Bookmarks
1. |
Prove the following identities :sin2θ – cos2 ϕ = sin2ϕ – cos2θ |
Answer» Taking LHS = sin2 θ – cos2 φ =( 1 – cos2 θ) – (1 – sin2 φ) [∵ cos2 θ + sin2 θ = 1] & [∵ cos2 φ + sin2 φ = 1] = 1 – cos2 θ – 1 + sin2 φ = sin2 φ – cos2 θ = RHS Hence Proved |
|