1.

Prove the following identities :(sinθ + cosθ)2 + (sinθ – cosθ)2 = 2

Answer»

Taking LHS = (sin θ + cos θ)2 + (sin θ – cos θ)2

Using the identity,(a + b)2 = (a2 + b2 + 2ab) and (a – b)2 = (a2 + b2 – 2ab)

= sin2 θ + cos2 θ + 2sin θ cos θ + sin2 θ + cos2 θ – 2sin θ cos θ

= 1 +1 [∵ cos2 θ + sin2 θ = 1]

= 2

= RHS

Hence Proved



Discussion

No Comment Found