1.

Prove the following identities :tan4θ + tan2θ = sec4θ – sec2θ

Answer»

Taking LHS = tan4 θ + tan2 θ

= (tan2 θ)2 + tan2 θ

= ( sec2 θ – 1)2 + (sec2 θ – 1) [∵ 1+ tan2 θ = sec2 θ ]

= sec4 θ + 1 – 2 sec2 θ + sec2 θ – 1 [∵ (a – b)2 = (a2 + b2 – 2ab)]

= sec4 θ – sec2 θ

= RHS

Hence Proved



Discussion

No Comment Found