1.

Prove the following:sin 18° = √5-1/4

Answer»

Let θ = 18° 

∴ 5θ = 90°

∴ 2θ + 3θ = 90° 

∴ 2θ = 90° – 3θ 

∴ sin 2θ = sin (90° – 3θ) 

∴ sin 2θ = cos 3θ 

∴ 2 sin θ cos θ = 4 cos3 θ – 3 cos θ 

∴ 2 sin θ = 4 cos2 θ – 3 …..[∵ cos θ ≠ 0] 

∴ 2 sin θ = 4 (1 – sin2 θ) – 3 

∴ 2 sin θ = 1 – 4 sin2 θ 

∴ 4 sin2 θ + 2 sin θ – 1 = 0

∴ sin θ = \(\frac{-2±\sqrt{4+16}}{8}\)

=\(\frac{-2±2\sqrt5}{8}\)

=\(\frac{-1±\sqrt5}{4}\)

Since, sin 18° > 0

∴ sin 18°=\(\frac{\sqrt5-1}{4}\)



Discussion

No Comment Found