1.

Range of `f(x)=tan(pi[x^2-x])/[1+sin(cosx)]`,where [.] denotes greatest integer function.

Answer» Here, we are given `x^2-x` is a greatest integer function.
`:.` We can write the given expression,
`f(x) = tan(npi)/(1+sin(cosx))`, here `n` is an integer.
We know, `tan (npi)` is always `0`.
Now, we have to check if the value of `1+sin(cosx)` is `0` or not.
Let `1+sin(cosx) = 0`
`=>sin(cosx) = -1`
`=>cosx = -pi/2`
We know, value of `cosx` lies between `-1` and `1`.
So, `cosx` can not be `-pi/2`.
`:. 1+sin(cosx)` can not be `0`.
`:.` Value of the given expression `= tan (npi)/(1+sin(cosx)) = 0`
So, option `D` is the correct option.


Discussion

No Comment Found

Related InterviewSolutions