InterviewSolution
Saved Bookmarks
| 1. |
Refer to Example 30, if the time of journey is minimum, find the value of v in terms of given quantities and also the minimum time. |
|
Answer» `t=d/v+v/2(1/alpha+1/beta)=dv^(-1)+v/2(1/alpha+1/beta)` for t to be minimum `(dt)/(dv)=d(-1)v^(-2)+1/2(1/alpha+1/beta)=0` `d/v^(2)=(alpha+beta)/(2alphabeta)` `v=sqrt((2alphabetad)/(alpha+beta))` `t_(min)=d/sqrt((2alphabetad)/(alpha+beta))+1/2sqrt((2alphabetad)/(alpha+beta)).((alpha+beta)/(2alphabeta))` `=sqrt(((alpha+beta)d)/ (2alphabeta))+=sqrt(((alpha+beta)d)/ (2alphabeta))` `sqrt((2(alpha+beta)d)/(alphabeta))` |
|