Saved Bookmarks
| 1. |
Show that dl/dt = τ, where L is the angular momentum and τ is the torque. |
|
Answer» As we know, L = r × p, differentiating on both the SIDES, ⇒ \frac{dl}{dt} dt dl
= \frac{d}{dt} dt d
( r × p) ⇒ \frac{dl}{dt} dt dl
= \frac{dr}{dt} dt dr
× p + r × \frac{dp}{dt} dt dp
⇒ \frac{dl}{dt} dt dl
= v × p + r × \frac{dp}{dt} dt dp
⇒ \frac{dl}{dt} dt dl
= v × MV + r × \frac{dp}{dt} dt dp
SINCE, v = 0 ⇒ \frac{dl}{dt} dt dl
= r × \frac{dp}{dt} dt dp
= r × F = τ ⇒ \frac{dl}{dt} dt dl
= τ |
|