1.

Show that each of the following sequences is an A.P. Also, find the common difference and write 3 more terms in case. 9, 7, 5, 3 …

Answer»

9, 7, 5, 3 …

A.P is known for Arithmetic Progression whose common difference = an – an-1 where n > 0 

a1 = 9, a2 = 7, a3 = 5, a4 = 3 

Now, 

a2 – a1 = 7 – 9 = -2 

a3 – a2 = 5 – 7 = -2 

a4 – a3 = 3 – 5 = -2 

As, 

a2 – a1 = a3 – a2 = a4 – a3 

The given sequence is A.P Common difference, 

d = a2 – a1 = - 2 

To find the next three more terms of A.P, firstly find an 

We know, 

an = a + (n-1) d 

Where a is first term or a1 and d is common difference 

∴ an = 9 + (n-1) -2 

⇒ an = 9 – 2n + 2 

⇒ an = 11 – 2n 

When n = 5 : 

a5 = 11 – 2(5) 

⇒ a5 = 11 – 10 

⇒ a5 = 1 

When n = 6 : 

a6 = 11 – 2(6) 

⇒ a6 = 11 – 12 

⇒ a6 = -1 

When n = 7 : 

a7 = 11 – 2(7) 

⇒ a7 = 11 – 14 

⇒ a7 = -3 

Hence, 

A.P is 9, 7, 5, 3, 1, -1, -3,….



Discussion

No Comment Found