

InterviewSolution
1. |
Show that each of the following sequences is an A.P. Also, find the common difference and write 3 more terms in case. 9, 7, 5, 3 … |
Answer» 9, 7, 5, 3 … A.P is known for Arithmetic Progression whose common difference = an – an-1 where n > 0 a1 = 9, a2 = 7, a3 = 5, a4 = 3 Now, a2 – a1 = 7 – 9 = -2 a3 – a2 = 5 – 7 = -2 a4 – a3 = 3 – 5 = -2 As, a2 – a1 = a3 – a2 = a4 – a3 The given sequence is A.P Common difference, d = a2 – a1 = - 2 To find the next three more terms of A.P, firstly find an We know, an = a + (n-1) d Where a is first term or a1 and d is common difference ∴ an = 9 + (n-1) -2 ⇒ an = 9 – 2n + 2 ⇒ an = 11 – 2n When n = 5 : a5 = 11 – 2(5) ⇒ a5 = 11 – 10 ⇒ a5 = 1 When n = 6 : a6 = 11 – 2(6) ⇒ a6 = 11 – 12 ⇒ a6 = -1 When n = 7 : a7 = 11 – 2(7) ⇒ a7 = 11 – 14 ⇒ a7 = -3 Hence, A.P is 9, 7, 5, 3, 1, -1, -3,…. |
|