1.

Show that each of the following sequences is an A.P. Also, find the common difference and write 3 more terms in each case. 3, -1, -5, -9…

Answer»

A.P is known for Arithmetic Progression whose common difference = an – an-1 where n > 0 

a1 = 3, a2 = -1, a3 = -5, a4 = -9 

Now, 

a2 – a1 = -1 – 3 = -4 

a3 – a2 = -5 – (-1) 

= -5 + 1 = -4 

a4 – a3 = -9 – (-5) 

= -9 + 5 = -4 

As, 

a2 – a1 = a3 – a2 = a4 – a3 

The given sequence is A.P 

Common difference, 

d = a2 – a1 = -4 

To find next three more terms of A.P, firstly find an 

We know, 

an = a + (n-1)d where a is first term or a1 and d is common difference 

∴ an = 3 + (n-1) -4 

⇒ an = 3 – 4n + 4 

⇒ an = 7 – 4n 

When n = 5 : 

a5 = 7 – 4(5) 

⇒ a5 = 7 – 20 

⇒ a5 = -13 

When n = 6 : 

a6 = 7 – 4(6) 

⇒ a6 = 7 – 24 

⇒ a6 = -17 

When n = 7 : 

a7 = 7 – 4(7) 

⇒ a7 = 7 – 28 

⇒ a7 = -21 

Hence, 

A.P is 3, -1, -5, -9, -13, -17, -21,…



Discussion

No Comment Found