

InterviewSolution
1. |
Show that each of the following sequences is an A.P. Also, find the common difference and write 3 more terms in each case. 3, -1, -5, -9… |
Answer» A.P is known for Arithmetic Progression whose common difference = an – an-1 where n > 0 a1 = 3, a2 = -1, a3 = -5, a4 = -9 Now, a2 – a1 = -1 – 3 = -4 a3 – a2 = -5 – (-1) = -5 + 1 = -4 a4 – a3 = -9 – (-5) = -9 + 5 = -4 As, a2 – a1 = a3 – a2 = a4 – a3 The given sequence is A.P Common difference, d = a2 – a1 = -4 To find next three more terms of A.P, firstly find an We know, an = a + (n-1)d where a is first term or a1 and d is common difference ∴ an = 3 + (n-1) -4 ⇒ an = 3 – 4n + 4 ⇒ an = 7 – 4n When n = 5 : a5 = 7 – 4(5) ⇒ a5 = 7 – 20 ⇒ a5 = -13 When n = 6 : a6 = 7 – 4(6) ⇒ a6 = 7 – 24 ⇒ a6 = -17 When n = 7 : a7 = 7 – 4(7) ⇒ a7 = 7 – 28 ⇒ a7 = -21 Hence, A.P is 3, -1, -5, -9, -13, -17, -21,… |
|