

InterviewSolution
Saved Bookmarks
1. |
Show that if `A subB`, then `C" "" "BsubC" "" "A`. |
Answer» Let `A sub B` Let `x in (C-B)rArrx inC and cancel(in)B` `rArr x in C and cancel(in)A (becauseA subB)` `rArr x in (C-A)` `rArr (C-B) sub(C-A)`. |
|