1.

Show that if `A subB`, then `C" "" "BsubC" "" "A`.

Answer» Let `A sub B`
Let `x in (C-B)rArrx inC and cancel(in)B`
`rArr x in C and cancel(in)A (becauseA subB)`
`rArr x in (C-A)`
`rArr (C-B) sub(C-A)`.


Discussion

No Comment Found

Related InterviewSolutions