1.

Show that if `iz^3+z^2-z+i=0`, then `|z|=1`

Answer» We have `iz^(3) + z^(2) - z + i = 0`
`rArr" "z^(3)-iz^(2)+iz + 1 = 0" "["on dividing both sides by I"]`
`rArr" "z^(2)(z-i) + i(z-i) = 0`
`rArr" "(z-i)(z^(2)+i)=0`
`rArr" "z = i or z^(2) = -i`.
Now, `z = i rArr |z| = |i| rArr |z| = 1`
And, `z^(2) =-i rArr |z^(2)|=|-i|=1 rArr |z| = 1`.


Discussion

No Comment Found