InterviewSolution
Saved Bookmarks
| 1. |
Show that `lim_(xrarr2) ([x-2])/(x-2)` does not exist. |
|
Answer» We know that `|x-2|={(x-2),xge2 -(x-2),xlt2` `therefore R.H.L.=underset(xrarr2)"lim".f(x) (| x-2|)/(x-2)` `=underset(xrarr2^(+))"lim"(|x-2|)/((x-2))=underset(xrarr2^(+))"lim"((x-2))/((x-2))` L.H.L. `=underset(xrarr2^(-))"lim"f(x)` `=underset(Xrarr2^(-))"lim"(|(x-2)|)/(x-2)` `=underset(xrarr2^(-))"lim"(|x-2|)/(x-2)` `=underset(xrarr2^(-))"lim"(-(x-2))/(x-2)` `=-1` `because R.H.L.neL.H.L`. `therefore underset(xrarr2)f(x)=underset(Xrarr2)"lim"(|x-2|)/((x-2))` does not exist. |
|