1.

Show that none of the following is an identity:(i) cos2θ + cosθ = 1 (ii) sin2θ + sinθ =  1(iii) tan2θ + sinθ = cos2θ

Answer»

(i) cos2θ + cosθ = 1 

LHS = cos2 θ + cos θ 

=1 − sin2 θ + cos θ 

= 1 − (sin2 θ − cos θ) 

Since LHS ≠ RHS, this not an identity.

(ii) sin2θ + sinθ =  1

LHS = sin2 θ + sin θ 

= 1 − cos2 θ + sin θ

= 1 − (cos2 θ − sin θ) 

Since LHS ≠ RHS, this is not an identity.

(iii) tan2θ + sinθ = cos2θ

LHS = tan2 θ + sin θ

\(\frac{sin^2θ}{cos^2θ}\) + sinθ

\(\frac{1-cos^2θ}{cos^2θ}\)+ sinθ

= sec2 θ − 1 + sin θ 

Since LHS ≠ RHS, this is not an identity.



Discussion

No Comment Found