InterviewSolution
Saved Bookmarks
| 1. |
Show that none of the following is an identity:(i) cos2θ + cosθ = 1 (ii) sin2θ + sinθ = 1(iii) tan2θ + sinθ = cos2θ |
|
Answer» (i) cos2θ + cosθ = 1 LHS = cos2 θ + cos θ =1 − sin2 θ + cos θ = 1 − (sin2 θ − cos θ) Since LHS ≠ RHS, this not an identity. (ii) sin2θ + sinθ = 1 LHS = sin2 θ + sin θ = 1 − cos2 θ + sin θ = 1 − (cos2 θ − sin θ) Since LHS ≠ RHS, this is not an identity. (iii) tan2θ + sinθ = cos2θ LHS = tan2 θ + sin θ = \(\frac{sin^2θ}{cos^2θ}\) + sinθ = \(\frac{1-cos^2θ}{cos^2θ}\)+ sinθ = sec2 θ − 1 + sin θ Since LHS ≠ RHS, this is not an identity. |
|