InterviewSolution
Saved Bookmarks
| 1. |
Show that tan2 θ + cot2 θ ≥ 2 for all θ ∈ R |
|
Answer» tan2 θ + cot2 θ = tan2 θ + 1/tan2 θ (tan θ)2 + (1/tan θ)2 = (tan θ - 1/ tan θ)2 + 2tan θ. 1/ tan θ ...[∴a2 + b2 = (a-b)2 + 2ab] = (tan θ - 1/ tan θ)2 + 2 ≥ 2 for all θ ∈R. |
|