1.

Show that the equation `e^(sinx)-e^(-sinx)-4=0`has no real solution.

Answer» `e^(sinx)-e^(-sinx)-4=0`
`e^(sinx)-1/(e^(sinx))-4=0`
`((e^(sinx))^2-1)/(e^(sinx))=4`
`(e^(sinx))^2-4e^(sinx)-1=0`
`e^(sinx)=(4pmsqrt20)/2=(4pm2sqrt5)/2`
`e^(sinx)=2pmsqrt5=2pm2.73`
`=-0.236`
`0lte^(sinx)lte`.


Discussion

No Comment Found