InterviewSolution
Saved Bookmarks
| 1. |
Show that the equation `e^(sinx)-e^(-sinx)-4=0`has no real solution. |
|
Answer» `e^(sinx)-e^(-sinx)-4=0` `e^(sinx)-1/(e^(sinx))-4=0` `((e^(sinx))^2-1)/(e^(sinx))=4` `(e^(sinx))^2-4e^(sinx)-1=0` `e^(sinx)=(4pmsqrt20)/2=(4pm2sqrt5)/2` `e^(sinx)=2pmsqrt5=2pm2.73` `=-0.236` `0lte^(sinx)lte`. |
|