

InterviewSolution
Saved Bookmarks
1. |
Show that the equation `e^(sinx)-e^(-sinx)-4=0`has no real solution.A. infinite number of real rootsB. no real rootsC. exactly one real rootD. exactly four real roots |
Answer» Correct Answer - 2 Let ` e^(sin x) =t` ` rArr t^(3) - 4t - 1 = 0 ` ` t = (4 pmsqrt(16 + 4))/(2)` `rArr t = e^(sin x ) = 2 pm sqrt(5)` `rArr t = e^(sin x ) = 2 - sqrt(5),e^(sin x ) = 2 + sqrt(5)` `rArr e^(sin x) = - sqrt(5) lt 0 ` , whihc is not possible or ` sin x = In (2 + sqrt(5)) gt 1`, which is not possible Hence no solution . |
|