InterviewSolution
Saved Bookmarks
| 1. |
Show that `|veca|vecb+|vecb|veca` is perpendicular to `|veca|vecb-|vecb|veca` for any two non zero vectors `veca and vecb. |
|
Answer» `(|veca|vecb+ |vecb|veca).(|veca|vecb- |vecb|veca)` =`|veca|^(2)vecb.vecb- |veca||vecb|^(2)vecb.veca` `+ |vecb||veca|veca.vecb-|veca||vecb|^(2)veca.veca` `= |veca|^(2)|vecb|^(2)-|vecb|^(2)|veca|^(2)` =0 Hence, `|veca|vecb + |vecb|veca and |veca|vecb- |vecb|veca` are perpendicular to each other . |
|