1.

`Sigma_(r=1)^(infty) tan^(-1)(1)/(2r^(2))=t` then tan t is equal toA. `2/3`B. 1C. `sqrt(5)/(3)`D. none of these

Answer» we have
`t=underset(oo)overset(r=1)Sigma tan^(-1)((1)/(2r)^(2))`
`rarr t=underset(r=1)overset(oo)Sigma tan^(-1)(2)/(1+4r^(2)-1)`
`underset(r=1)overset(oo)Sigma{tan^(-1)(2r+1)-tan^(-1)(2r-1)}`
`=underset(n rarr oo) lim {(tan^(-1) 3-tan^(-1)(2n+1)-tan^(-1)(2r-1)}`
`=underset(n rarr oo) lim {(tan^(-1) 3-tan^(-1)+(tan^(-1)5-tan^(-1)3)+(tan^(-1)(2n+1)-tan^(-1)(2n-1)}`
`rarr t= underset(n rarr oo) lim (tan^(-1)(2n+1)-tan^(-1)1)=(pi)/(2)-(pi)/(4)=(pi)/(4)`
`therefore tan t=1`


Discussion

No Comment Found