1.

समीकरण `x.(dy)/(dx)-y=logx` का व्यापक हल ज्ञात कीजिए।

Answer» `x.(dy)/(dx)-y=logx`
`implies (dy)/(dx)-(1)/(x).y=(logx)/(x)`
यहाँ `P=-(1)/(x)` और `Q=(logx)/(x)`
`therefore " "I.F.e^(intPdx)=e^(int-(1)/(x)dx)=e^(-logx)`
`=e^(log(x^(-1)))x^(-1)=(1)/(x)`
और व्यापक हल
`y(I.F.)=intQ.(I.F.)dx+c`
`y(1)/(x)=int(logx)/(x).(1)/(x)dx+c`
`implies int x^(-2).logxdx+c`
`=-(1)/(x)logx+intx^(-2)dx+c`
`=-(1)/(x)logx-(1)/(x)+c`
`y=-logx-1+c.x`


Discussion

No Comment Found