

InterviewSolution
Saved Bookmarks
1. |
समीकरण `x.(dy)/(dx)-y=logx` का व्यापक हल ज्ञात कीजिए। |
Answer» `x.(dy)/(dx)-y=logx` `implies (dy)/(dx)-(1)/(x).y=(logx)/(x)` यहाँ `P=-(1)/(x)` और `Q=(logx)/(x)` `therefore " "I.F.e^(intPdx)=e^(int-(1)/(x)dx)=e^(-logx)` `=e^(log(x^(-1)))x^(-1)=(1)/(x)` और व्यापक हल `y(I.F.)=intQ.(I.F.)dx+c` `y(1)/(x)=int(logx)/(x).(1)/(x)dx+c` `implies int x^(-2).logxdx+c` `=-(1)/(x)logx+intx^(-2)dx+c` `=-(1)/(x)logx-(1)/(x)+c` `y=-logx-1+c.x` |
|