1.

Solve : `3x^(2) + 8ix + 3 = 0`.

Answer» The given equation is `3x^(2)+8ix+3=0`.
This is of the form `ax^(2)+bx+c=0`, where a = 3, b = 8i and c = 3.
`therefore" "(b^(2)-4ac)={(8i)^(2)-4 xx 3 xx 3}=(-64-36)=-100 lt 0`.
So, the given equation has complex roots.
These roots are given by
`(-b+- sqrt(b^(2)-4ac))/(2a)=(-8i+- sqrt(-100))/(2 xx 3)" "[because b^(2)-4ac=-100]`
`=(-8i+-10i)/(6)=(-4i+-5i)/(3)`.
Thus, the roots of the given equation are
`(-4i+5i)/(3)=(i)/(3)and(-4i+5i)/(3)=(-9i)/(3)=-3i`.
`therefore" ""solution set"={(i)/(3),-3i}`.


Discussion

No Comment Found