InterviewSolution
Saved Bookmarks
| 1. |
Solve 4 cos2 θ = 3 (0° < θ < 360°) |
|
Answer» 4 cos2θ = 3 ⇒ cos2 θ= \(\frac{3}{4}\) ⇒ cos θ= \(\pm \frac{\sqrt{3}}{2}\) cos θ = \( \frac{\sqrt{3}}{2}\) ⇒ θ = 30°, 330° (∵ cos θ is +ve and so θ lies in 1st and 4th quad.) cos θ = \(- \frac{\sqrt{3}}{2}\) ⇒ θ = 150°, 210° (∵ cos θ is –ve and so θ lies in 2nd and 3rd quad.) ⇒ θ = 30°, 150°, 210°, 330°. Note: if the value of θ is α when θ lies in the Ist quadrant then it is 180° – α |
|