 
                 
                InterviewSolution
 Saved Bookmarks
    				| 1. | Solve cos x – √3 sin x = 1, 0° < x < 360° | 
| Answer» Dividing both the sides of the equation cos x − √3 sin x = 1 by \(\sqrt{(1)^2 +(- \sqrt{3})^2}\) = 2 , we get \(\frac{1}{2}\) cos x - \(\frac{\sqrt{3}}{2}\) sin x = \(\frac{1}{2}\) ⇒ cos 60° cos x – sin 60° sin x = \(\frac{1}{2}\) ⇒ cos (x + 60°) = cos 60° ⇒ cos (x + 60°) = cos 60° = cos (360° – 60°) = cos (360° + 60°) ⇒ x + 60° = 60° or 300° or 420° ⇒ x = 0°, 240°, 360°. | |