1.

Solve cos x – √3 sin x = 1, 0° < x < 360°

Answer»

Dividing both the sides of the equation cos x − √3 sin x = 1 by

\(\sqrt{(1)^2 +(- \sqrt{3})^2}\) = 2 , we get

\(\frac{1}{2}\) cos x - \(\frac{\sqrt{3}}{2}\) sin x = \(\frac{1}{2}\) 

⇒ cos 60° cos x – sin 60° sin x = \(\frac{1}{2}\) 

⇒ cos (x + 60°) = cos 60° 

⇒ cos (x + 60°) = cos 60° = cos (360° – 60°) = cos (360° + 60°) 

⇒ x + 60° = 60° or 300° or 420° 

⇒ x = 0°, 240°, 360°.



Discussion

No Comment Found