InterviewSolution
Saved Bookmarks
| 1. |
Solve cos2 θ – sin θ – \(\frac{1}{4}\) = 0 (0° < θ < 360°) |
|
Answer» cos2 θ – sin θ - \(\frac{1}{4}\) = 0 ⇒ 1 – sin2 θ – sin θ – \(\frac{1}{4}\) = 0 ⇒ 4 sin2 θ + 4 sin θ – 3 = 0 ⇒ (2 sin θ + 3) (2 sin θ – 1) = 0 ⇒ 2 sin θ + 3 = 0 or 2 sin θ – 1 = 0 ⇒ sin θ = - \(\frac{3}{2}\) or sin θ = \(\frac{1}{2}\) ⇒ θ = 30°, 150°. Since |sin θ| = \(\frac{3}{2}\) is > 1, the value sin θ = - \(\frac{3}{2}\) is inadmissible. ∴ θ = 30°, 150°. |
|