InterviewSolution
Saved Bookmarks
| 1. |
Solve \(\frac{dy}{dx}\) = y2 tan2x, given that y = 2 when x = 0. |
|
Answer» we have: Given that, y = 2 when x = 0 ⇒ \(\frac{dy}{y^2}\) = tan2x dx ⇒ \(\int\frac{dy}{y^2}\) = ∫tan2x dx integrating both sides ⇒ - \(\frac{1}y\)= \(\frac{log(sec2x)}2\) ⇒ - \(\frac{1}2\) = 0 + c ⇒ c = - \(\frac{1}2\) ⇒ y(1 + log cos2x) = 2 is the particular solution |
|