1.

Solve \(\frac{dy}{dx}\) = y2 tan2x, given that y = 2 when x = 0.

Answer»

we have:
\(\frac{dy}{dx}\) = y2 tan2x

Given that, y = 2 when x = 0

⇒ \(\frac{dy}{y^2}\) = tan2x dx

⇒ \(\int\frac{dy}{y^2}\) = ∫tan2x dx

integrating both sides

⇒ - \(\frac{1}y\)\(\frac{log(sec2x)}2\)

⇒ - \(\frac{1}2\) = 0 + c

⇒ c = - \(\frac{1}2\)

⇒ y(1 + log cos2x) = 2

is the particular solution



Discussion

No Comment Found