 
                 
                InterviewSolution
 Saved Bookmarks
    				| 1. | Solve: int (4t^2 + 10 / (t^2 + 3)(t^2+4)) * dt\(\int\frac{4t^2+10}{(t^2+3)(t^2+4)}dt\) | 
| Answer» \(\int\frac{4t^2+10}{(t^2+3)(t^2+4)}dt\) = \(\int\frac{4(t^2+3)+2((t^2+4)-(t^2+3))}{(t^2+3)(t^2+4)}dt\) \(=\int(\frac4{t^2+4}-\frac2{t^2+3}+\frac3{t^2+4})dt\) \(=\int\frac{6}{t^2+4}dt-\int\frac{2}{t^2+3}dt\) \(=\frac62tan^{-1}\frac{t}2-\frac2{\sqrt3}tan^{-1}\frac{t}{\sqrt3}+c\) = 3 tan-1\(\frac{t}2\) \(-\frac{2}{\sqrt3}tan^{-1}\frac{t}{\sqrt3}+c\) | |