

InterviewSolution
Saved Bookmarks
1. |
Solve `sqrt(5x^2-6x+8)+sqrt(5x^2-6x-7)=1.` |
Answer» Let `5x^(2) - 6x = y`, Then, `sqrt(5x^(2)-6x+8)-sqrt(5x^(2)-6x-7)=1` or ` sqrt(y+8)-sqrt(y-7)=1` or `(sqrt(y+8)-sqrt(y-7))^(2) = 1` or ` y = sqrt(y^(2)+y-56)` or `y^(2) = Y^(2) + y- 56` or y = 56 `rArr 5x^(2)-6x = 56 [because y = 5x^(2) - 6x`] or (5x+ 14) (x - 4) = 0 or `x = 4,(-14)/(5)` Clearly, both the values satisfy the given equation. Hence, the roots of the given equation are 4 and `-14//5`. |
|