1.

Solve tan 3x = cot 5x (0 < x < 2π).

Answer»

tan 3x = tan \(\big(\) \(\frac{\pi}{2}\) - 5x \(\big)\) 

⇒ 3x = nπ + \(\big(\) \(\frac{\pi}{2}\) - 5x \(\big)\)  (∵ tan θ = tan α ⇒ θ = nπ + α)

⇒ 8x = (2n + 1)\(\frac{\pi}{2}\)  ⇒ x = (2n + 1) \(\frac{\pi}{16}\) 

∴  Putting n = 0, 1, 2, ..... 15, we see that the values of x between 0 and 2π are

x = \(\frac{\pi}{16}\) ,\(\frac{3\pi}{16}\) , \(\frac{5\pi}{16}\) ,..., \(\frac{31\pi}{16}\).



Discussion

No Comment Found