InterviewSolution
Saved Bookmarks
| 1. |
Solve the differential equation \(\frac{dy}{dx}\) = y sin 2x, given that y(0) = 1. |
|
Answer» We have, \(\frac{dy}{dx}\) = y sin 2x ⇒ \(\frac{dy}{y}\) = y sin2x ⇒ log y = - \(\frac{cos2x}2\) + c For y =1, x = 0, we have, c = \(\frac{1}{2}\) ⇒ log y = \(\frac{1}{2}\)(1 - cos2x) ⇒ log y = sin2x Thus, The particular solution is: y = esin2x |
|