InterviewSolution
Saved Bookmarks
| 1. |
Solve the equation `2sinx+cosy=2`for the value of `xa n dydot` |
|
Answer» `2sinx+cosy = 2` `=>cosy = 2(1-sinx)->(1)` As `-1 le cosy le 1` `:. -1 le 2(1-sinx) le 1` `=> -1/2 le 1-sinx le 1/2` `=> 1/2 le sinx le 3/2` As maximum value of `sinx` can be `1`, `:. 1/2 le sinx le 1` `:. x in [pi/6,pi/2].` Now, when `x = pi/6`, `cosy = 2(1-sin(pi/6)) = 2(1/2) = 1` `=> y = 0` Now, when `x = pi/2`, `cosy = 2(1-sin(pi/2)) = 2(0) = 0` `=> y = pi/2` `:. x in [pi/6,pi/2].` `:. y in [0,pi/2].` |
|