1.

Solve the equation:`sqrt(2)x^2+x+sqrt(2)=0`

Answer» The given equation is `sqrt(2)x^(2) + x + sqrt(2) = 0`.
This is of the form `ax^(2)+bx+c=0`, where `a = sqrt(2), b = 1 and c = sqrt(2)`.
`therefore" "(b^(2)-4ac)=(1^(2)-4xx sqrt(2)xx sqrt(2))=(1-8) =-7 lt 0`.
So, the given equation has complex roots.
These roots are given by
`(-b +- sqrt(b^(2)-4ac))/(2a)=(-1 +- sqrt(-7))/(2 sqrt(2))" "[because b^(2)-4ac = -7]`
`=(-1 +- i sqrt(7))/(2 sqrt(2))`.
`therefore" ""solution set"={(-1+i sqrt(7))/(2 sqrt(2)),(-1-i sqrt(7))/(2 sqrt(2))}={(-1)/(2 sqrt(2))+(sqrt(7))/(2 sqrt(2))i,(-1)/(2 sqrt(2))-(sqrt(7))/(2 sqrt(2))i}`.


Discussion

No Comment Found