1.

Solve the equations :(x - 4) (y - 4)= 16(y - 6) (z - 6)= 36(z - 8) (x - 8) = 64.

Answer»

Solution :We have,(x - 4) (y - 4) = 16
implies XY - 4x - 4y + 16 = 16
implies4(x+y) = xy
implies`(x+y)/(xy)=(1)/(4)""(because xy ne 0)`
implies`(1)/(x) + (1)/(y) = (1)/(4) "" ….(1)`
Also,(y - 6)(z - 6) = 36
impliesyz - 6y - 6z + 36 = 36
implies 6(y + z) = yz
implies`(y+z)/(yz)=(1)/(6)""(because yz ne 0)`
implies`(1)/(z) + (1)/(y) = (1)/(6) ""....(2)`
and(z - 8) (z - 8) = 64
implies xz - 8Z - 8x + 64 = 64
implies implies8(x + z) = xz
implies`(x + z)/(xz) = (1)/(8) ""(because zx ne 0)`
implies`(1)/(z) + (1)/(x) = (1)/(8)""....(3)`
Adding equations (1), (2) and (3), we get
`2((1)/(x) + (1)/(y) + (1)/(z)) = (1)/(4) + (1)/(6) + (1)/(8)`
implies `(1)/(x) + (1)/(y) + (1)/(z) = (6+4+3)/(24) xx (1)/(2)`
implies`(1)/(x) + (1)/(y) + (1)/(z) = (13)/(48)"....(4)"`
`therefore`From equations (1) and (4), we get
`(1)/(4) + (1)/(z) = (13)/(48)implies(1)/(z) = (13)/(48) - (1)/(4) = (1)/(48)`
`therefore z = 48`.
From equations (2) and (4), we get
`(1)/(6) + (1)/(x) = (13)/(48)`
implies`(1)/(x) = (13)/(48) - (1)/(6) = (5)/(48)`
` implies x = (48)/(5)`
From equations (3) and (4), we get
`(1)/(8) + (1)/(y) = (13)/(48)`
implies `(1)/(y) = (13)/(48)-(1)/(8) = (7)/(48)`
`thereforey = (48)/(7)`
So, `x = (48)/(5), y = (48)/(7), z = 48`


Discussion

No Comment Found

Related InterviewSolutions