1.

Solve the following differential equation:  x * dt/dx = x+t

Answer»

\(x\frac{dt}{dx}\) = x + t

⇒ \(\frac{dt}{dx}-\frac{t}x=1\)

I.F. = epdx = e -\(\frac1x\)dx = e-logx = \(\frac1x\)

It's complete solutions

y x I.F = (I.F) x Q dx

⇒ \(\frac{y}x\) = \(\int\frac1x\) x 1 dx = log x + c

⇒ y = x log x + cx



Discussion

No Comment Found