1.

Solve the following differential equation:x dy - (y + 2x2) dx = 0

Answer»

We have x dy - (y + 2x2) dx = 0

The given differential equation can be written as

⇒ x\(\frac{dy}{dx}\) - y = 2x2

or  \(\frac{dy}{dx}-\frac{1}x.y=2x\)

This is of the form \(\frac{dy}{dx}\) + Py = Q, where P = \(\frac{-1}x,\) Q = 2x

IF = \(e^{-\int\frac{1}{x}dx}=e^{-log\,x}=e^{log\,x^{-1}}=\frac 1x\)

\(\therefore\) Solution is y.\(\frac 1x\) = ∫2x.\(\frac 1x{dx}\)

⇒ y.\(\frac 1x\) = 2x + C

or y = 2x2 + Cx



Discussion

No Comment Found