InterviewSolution
Saved Bookmarks
| 1. |
Solve the following differential equation:x dy - (y + 2x2) dx = 0 |
|
Answer» We have x dy - (y + 2x2) dx = 0 The given differential equation can be written as ⇒ x\(\frac{dy}{dx}\) - y = 2x2 or \(\frac{dy}{dx}-\frac{1}x.y=2x\) This is of the form \(\frac{dy}{dx}\) + Py = Q, where P = \(\frac{-1}x,\) Q = 2x IF = \(e^{-\int\frac{1}{x}dx}=e^{-log\,x}=e^{log\,x^{-1}}=\frac 1x\) \(\therefore\) Solution is y.\(\frac 1x\) = ∫2x.\(\frac 1x{dx}\) ⇒ y.\(\frac 1x\) = 2x + C or y = 2x2 + Cx |
|