

InterviewSolution
Saved Bookmarks
1. |
Solved the following equation by the method of completing the square : 4sqrt3x^(2)+5x-2sqrt3=0 |
Answer» Solution :We have, `4sqrt3x^(2)+5x-2SQRT3=0` Dividing each term by `4sqrt3` we, get `x^(2)+(5)/(4sqrt3)x=(2sqrt3)/(4sqrt3)=0` `impliesx^(2)+(5)/(4sqrt3)x=(1)/(2)` Adding `((1)/(2)"coefficient of x")^(2)i.e.,((5)/(8sqrt3))^(2)` to both SIDES, we get `x^(2)+(5)/(4sqrt3)x+((5)/(8sqrt(3)))^(2)=((5)/(8sqrt3))^(2)+(1)/(2)` `implies(x+(5)/(8sqrt3))^(2)=(25)/(192)+(1)/(2)` `implies(x+(5)/(8sqrt3))^(2)=(25+96)/(192)` `implies(x+(5)/(8sqrt3))^(2)=(121)/(192)` Taking square root of both sides, we get `x+(5)/(8sqrt3)=+-(11)/(8sqrt3)` `:.x=-(5)/(8sqrt3)+-(11)/(8sqrt3)=(-5+-11)/(8sqrt3)` `impliesx=(-5+11)/(8sqrt3)orx=(-5-11)/(8sqrt3)` `impliesx=(3)/(4sqrt3)orx=(-2)/(sqrt3)` Hence, `x=(3)/(4sqrt3)orx=(-2)/sqrt3)` are the solutions of given equation. |
|