1.

`{sqrt(5+12i)+sqrt(5-12i)}/(sqrt(5+12i)-sqrt(5-12i)``=`

Answer» We have
`z=(sqrt(5+12i)+sqrt(5-12i))/(sqrt(5+12i)-sqrt(5-12i))`
`=((sqrt(5+12i)+sqrt(5-12i)))/((sqrt(5+12i)-sqrt(5-12i)))xx((sqrt(5+12i)+sqrt(5-12i)))/((sqrt(5+12i)+sqrt(5-12i)))`
`=((sqrt(5+12i)+sqrt(5-12i))^(2))/((5+12i)-(5-12i))=((5+12i)+(5-12i)+2sqrt((5)^(2)-(12i)^(2)))/(24i)`
`=(10+2 sqrt(25+144))/(24i)=(10+2 sqrt(169))/(24i)=((10+2xx13))/(24i)`
`=(36)/(24i)=(3)/(2i)=(3)/(2i)xx(i)/(i)=(3i)/(2i^(2))=-(3)/(2)i`.
Hence, `z =(0-(3)/(2)i) and bar(z) = bar((0-(3)/(2)i))=(0+(3)/(2)i)`.


Discussion

No Comment Found