InterviewSolution
Saved Bookmarks
| 1. |
`{sqrt(5+12i)+sqrt(5-12i)}/(sqrt(5+12i)-sqrt(5-12i)``=` |
|
Answer» We have `z=(sqrt(5+12i)+sqrt(5-12i))/(sqrt(5+12i)-sqrt(5-12i))` `=((sqrt(5+12i)+sqrt(5-12i)))/((sqrt(5+12i)-sqrt(5-12i)))xx((sqrt(5+12i)+sqrt(5-12i)))/((sqrt(5+12i)+sqrt(5-12i)))` `=((sqrt(5+12i)+sqrt(5-12i))^(2))/((5+12i)-(5-12i))=((5+12i)+(5-12i)+2sqrt((5)^(2)-(12i)^(2)))/(24i)` `=(10+2 sqrt(25+144))/(24i)=(10+2 sqrt(169))/(24i)=((10+2xx13))/(24i)` `=(36)/(24i)=(3)/(2i)=(3)/(2i)xx(i)/(i)=(3i)/(2i^(2))=-(3)/(2)i`. Hence, `z =(0-(3)/(2)i) and bar(z) = bar((0-(3)/(2)i))=(0+(3)/(2)i)`. |
|