1.

Subtract the first rational number from the second in each of the following:(i) \(\frac{3}{8}, \frac{5}{8}\)(ii) \(\frac{-7}{9}, \frac{4}{9}\)(iii) \(\frac{-2}{11}, \frac{-9}{11}\)(iv) \(\frac{11}{13}, \frac{-4}{13}\)(v) \(\frac{1}{4}, \frac{-3}{8}\)(vi) \(\frac{-2}{3}, \frac{5}{6}\)(vii) \(\frac{-6}{7}, \frac{-13}{14}\)(viii) \(\frac{-8}{33}, \frac{-7}{22}\)

Answer»

(i) \(\frac{5}{8}-\frac{3}{8}\) = \(\frac{5-3}{8}\)

\(\frac{2}{8}\) (Therefore, L.C.M of 8 and 8 is 8)

\(\frac{1}{4}\)

(ii) \(\frac{4}{9}-\frac{-7}{9}\) = \(\frac{4+7}{9}\)

\(\frac{11}{9}\) (Therefore, L.C.M of 9 and 9 is 9)

(iii) \(\frac{-9}{11}-\frac{-2}{11}\) = \(\frac{-9+2}{11}\)

 = \(\frac{-7}{11}\) (Therefore, L.C.M of 11 and 11 is 11) 

 (iv) \(\frac{-4}{13}-\frac{11}{13}\) = \(\frac{-4-11}{13}\)

\(\frac{-15}{13}\) (Therefore, L.C.M of 13 and 13 is 13)

 (v) \(\frac{-3}{8}-\frac{1}{4}\) = \(\frac{-3-2}{8}\)

 = \(\frac{-5}{8}\) (Therefore, L.C.M of 8 and 4 is 8)

 (vi) \(\frac{5}{6}-\frac{-2}{3}\) = \(\frac{5+4}{6}\)

 = \(\frac{9}{6}\) (Therefore, L.C.M of 6 and 3 is 6)

 (vii) \(\frac{-13}{14}-\frac{-6}{7}\) = \(\frac{-13+12}{14}\)

 = \(\frac{-1}{14}\) (Therefore, L.C.M of 14 and 7 is 14)

 (viii) \(\frac{-7}{22}-\frac{-8}{33}\) = \(\frac{-21+16}{66}\)

 = \(\frac{-55}{66}\) (Therefore, L.C.M of 22 and 33 is 66)



Discussion

No Comment Found

Related InterviewSolutions