

InterviewSolution
1. |
Verify the following:(i) \(\frac{3}{7}\times(\frac{5}{6}+\frac{12}{13})=(\frac{3}{7}\times\frac{5}{6})+(\frac{3}{7}\times\frac{12}{13})\)(ii) \(\frac{-15}{4}\times(\frac{3}{7}+\frac{-12}{5}) =(\frac{-15}{4}\times\frac{3}{7})+(\frac{-15}{4}\times\frac{-12}{5})\)(iii) \((\frac{-8}{3}+\frac{-13}{12})\times\frac{5}{6} =(\frac{-8}{3}\times\frac{5}{6})+(\frac{-13}{12}\times\frac{5}{6})\)(iv) \(\frac{-16}{7}\times(\frac{-8}{9}+\frac{-7}{6}) =(\frac{-16}{7}\times\frac{-7}{6})\) |
Answer» (i) \(\frac{3}{7}\times(\frac{5}{6}+\frac{12}{13})=(\frac{3}{7}\times\frac{5}{6})+(\frac{3}{7}\times\frac{12}{13})\) LHS = \(\frac{3}{7}\times(\frac{5}{6}+\frac{12}{13})\) \(=\frac{3}{7}\times(\frac{5\times13+12\times6}{78})\) = \(\frac{3}{7}\times(\frac{65+72}{78})\) = \(\frac{3}{7}\times(\frac{137}{78})\) = \(\frac{3\times137}{7\times78}\) = \(\frac{411}{546}\) In lowest terms, \(\frac{411}{546}= \frac{411\div3}{546\div3}=\frac{137}{182}\) RHS = \((\frac{3}{7}\times\frac{5}{6})+(\frac{3}{7}\times\frac{12}{13})\) = \((\frac{3\times5}{7\times6})+(\frac{3\times12}{7\times13})\) = \(\frac{15}{42}+(\frac{36}{91})\) = \(\frac{15\times13+36\times6}{546}\) = \(\frac{195+216}{546}\) = \(\frac{411}{546}\) In lowest terms, \(\frac{411}{546}= \frac{411\div3}{546\div3}=\frac{137}{182}\) LHS=RHS (ii) \(\frac{-15}{4}\times(\frac{3}{7}+\frac{-12}{5}) =(\frac{-15}{4}\times\frac{3}{7})+(\frac{-15}{4}\times\frac{-12}{5})\) LHS = \(\frac{-15}{4}\times(\frac{3}{7}+\frac{-12}{5})\) = \(\frac{-15}{4}\) \(\times(\frac{3\times5+(-12)\times7}{35})\) = \(\frac{-15}{4}\times(\frac{15-84}{35})\) = \(\frac{-15}{4}\times(\frac{-69}{35})\) = \((\frac{-15\times-69}{4\times35})\) = \(\frac{1035}{140}\) In lowest terms, \(\frac{1035}{140}=\frac{1035\div5}{140\div5} =\frac{207}{28}\) RHS = \((\frac{-15}{4}\times\frac{3}{7})+(\frac{-15}{4}\times\frac{-12}{5})\) = \((\frac{-15\times3}{4\times7})+(\frac{-1500}{4}\times\frac{-12}{5})\) = \(\frac{-45}{28}+(\frac{180}{20})\) = \(\frac{-45\times5+180\times7}{140}\) = \(\frac{-225+1260}{140}\) = \(\frac{1035}{140}\) In lowest terms, \(\frac{1035}{140}=\frac{1035\div5}{140\div5} =\frac{207}{28}\) LHS=RHS (iii) \((\frac{-8}{3}+\frac{-13}{12})\times\frac{5}{6} =(\frac{-8}{3}\times\frac{5}{6})+(\frac{-13}{12}\times\frac{5}{6})\) LHS = \((\frac{-8}{3}+\frac{-13}{12})\times\frac{5}{6}\) = \((\frac{-8\times4+(-13)\times1}{12})\times\frac{5}{6}\) = \((\frac{-32-13}{12})\times(\frac{5}{6})\) = \(\frac{-45}{12}\times\frac{5}{6}\) = \(\frac{-45\times5}{12\times6}\) = \(\frac{-225}{72}\) In lowest terms, \(\frac{-225}{72}= \frac{-225\div9}{72\div9}=\frac{-25}{8}\) RHS = \((\frac{-8}{3}\times\frac{5}{6})+(\frac{-13}{12}\times\frac{5}{6})\) = \((\frac{-8\times5}{3\times6})+(\frac{-13\times5}{12\times6})\) = \(\frac{-40}{18}+(\frac{-65}{72})\) = \(\frac{-40\times4+(-65)\times1}{72}\) = \(\frac{-160-65}{72}\) = \(\frac{-225}{72}\) In lowest terms, \(\frac{-225}{72}= \frac{-225\div9}{72\div9}=\frac{-25}{8}\) LHS=RHS (iv) \(\frac{-16}{7}\times(\frac{-8}{9}+\frac{-7}{6}) =(\frac{-16}{7}\times\frac{-7}{6})\) LHS = \(\frac{-16}{7}\times(\frac{-8}{9}+\frac{-7}{6})\) = \(\frac{-16}{7}\times(\frac{-8\times2+(-7)\times3}{18})\) = \(\frac{-16}{7}\times(\frac{-16-21}{18})\) = \(\frac{-16}{7}(\frac{-37}{18})\) = \(\frac{-16\times-37}{7\times18}\) = \(\frac{592}{126}\) In lowest terms, \(\frac{592}{126}=\frac{592\div2}{126\div2}=\frac{296}{63}\) RHS = \((\frac{-16}{7}\times\frac{-8}{9})+(\frac{-16}{7}\times\frac{-7}{6})\) = \((\frac{-16\times-18}{7\times9})+ (\frac{-16\times-7}{7\times6})\) = \(\frac{128}{63}+(\frac{112}{42})\) = \(\frac{128\times2+112\times3}{126}\) = \(\frac{592}{126}\) In lowest terms, \(\frac{592}{126}=\frac{592\div2}{126\div2}=\frac{296}{63}\) LHS=RHS |
|