1.

Verify whether the given statement is true or false:(i) \(\frac{13}{5}\div\frac{26}{10}= \frac{26}{10}\div\frac{13}{5}\)(ii) \(-9\div\frac{3}{4}= \frac{3}{4}\div(-9)\)(iii) \(\frac{-8}{9}\div\frac{-4}{3}= \frac{-4}{3}\div\frac{-8}{9}\)(iv) \(\frac{-7}{24}\div\frac{3}{-16}= \frac{3}{-16}\div\frac{-7}{24}\)

Answer»

(i)

\(\frac{13}{5} \div\frac{26}{10}= \frac{26}{10}\div\frac{13}{5}\)

LHS\(\frac{13}{5}\div\frac{26}{10}\)

\(\frac{13}{5}\times\frac{10}{26}\)

\(\frac{13\times10}{5\times26}\)

\(\frac{130}{130}= 1\)

RHS\(\frac{26}{10}\div\frac{13}{5}\)

\(\frac{26}{10}\times\frac{5}{13}\)

\(\frac{26\times5}{10\times13}\)

\(\frac{130}{130}=1\)

Since, RHS = LHS 

Therefore, True

(ii)

\(-9\div\frac{3}{4}=\frac{3}{4}(-9)\)

LHS = \(-9\div\frac{4}{3}\)

\(-9\times\frac{4}{3}\)

\(\frac{-9\times4}{3}\)

\(\frac{-36}{3}=-12\)

RHS\(\frac{3}{4}\div(-9)\)

\(\frac{3}{4}\times\frac{1}{-9}\)

\(\frac{3\times1}{4\times-9}\)

\(\frac{3}{-36}=\frac{-1}{12}\)

Since, RHS ≠ LHS

Therefore, False

(iii)

\(\frac{-8}{9}\div\frac{-4}{3}= \frac{-4}{3}\div\frac{-8}{9}\)

LHS\(\frac{-8}{9}\div\frac{-4}{3}\)

\(\frac{-8}{9}\times\frac{3}{-4}\)

\(\frac{-8\times3}{9\times-4}\)

\(\frac{-24}{-36} =\frac{2}{3}\)

RHS\(\frac{-4}{3}\div\frac{-8}{9}\)

\(\frac{-4}{9}\times\frac{9}{-8}\)

\(\frac{-4\times9}{3\times-8}\)

\(\frac{-36}{-24}=\frac{3}{2}\)

Since, RHS ≠ LHS

(iv)

\(\frac{-7}{24}\div\frac{3}{-16}=\frac{3}{-16}\div\frac{-7}{24}\)

LHS\(\frac{-7}{24}\div\frac{3}{-16}\)

\(\frac{-7}{24}\times\frac{-16}{3}\)

\(\frac{-7\times-16}{24\times3}\)

\(\frac{112}{72}=\frac{14}{9}\)

RHS\(\frac{3}{-16}\div\frac{-7}{24}\)

\(\frac{3}{-16}\times\frac{24}{-7}\)

\(\frac{3\times24}{-16\times-7}\)

\(\frac{72}{112}=\frac{9}{14}\)

Since, RHS ≠ LHS

Therefore, False



Discussion

No Comment Found

Related InterviewSolutions