1.

`sum_(n = 1)^(13)(i^(n)+i^(n+1))=(-1+i), n in N`.

Answer» `underset(n = 1)overset(13)sum (i^(n)+i^(n+1))=underset(n = 1)overset(13)sum i^(n)(1+i)=(1+i).underset(n = 1)overset(13)sum i^(n)`
`=(1+i).(i+i^(2)+i^(3)+....+i^(13)}`
`=(1+i)(a(1-r^(n)))/((1-r))`, where a=i, r=i, and n = 13
`(1+i).(i(1-i^(13)))/((1-i))= i(1+i).((1-i))/((1-i))=(-1 + i)." "[because i^(13) = (i^(13) = (i^(4))^(13) xx i = 1 xx i = i]`


Discussion

No Comment Found