1.

`tan^(-1)((sqrt(1-x^(2)))/x)` का अवकलन `cos^(-1)(2xsqrt(1-x^(2))),xne0` के सापेक्ष कीजिए

Answer» माना `u=tan^(-1)((sqrt(1-x^(2)))/x)`
`x=costhetarArrtheta=cos^(-1)x` रखने पर,
`u=tan^(-1)((sqrt(1-cos^(2)theta))/(costheta))`
`rArru=tan^(-1)((sqrt(sin^(2)theta))/(costheta))`
`rArru=tan^(-1)((sintheta)/(costheta))`
`rArru=tan^(-1)(tantheta)=theta`
`rArru=cos^(-1)x`
`therefore(du)/(dx)=(-1)/(sqrt(1-x^(2)))`
और `v=cos^(-1)(2xsqrt(1-x^(2)))`
`x=costhetarArrtheta=cos^(-1)x` रखने पर,
`v=cos^(-1)(2costhetasqrt(1-cos^(2)theta))`
`rArrv=cos^(-1)(2costhetasintheta)`
`rArrv=cos^(-1)(sin2theta)`
`rArrv=cos^(-1)(cos(pi/2-2theta))`
`rArrv=pi/2-2theta`
`rArrv=pi/2-2cos^(-1)x`
`therefore(dv)/(dx)=0-2xx(-1)/(sqrt(1-x^(2)))`
`=2/(sqrt(1-x^(2)))`
अब, `(du)/(dx)=(du//dx)/(dv//dx)`
`=-1/(sqrt(1-x^(2)))xx(sqrt(1-x^(2)))/2`
`rArr(du)/(dv)=-1/2`


Discussion

No Comment Found