1.

Tan θ + Cot θ = 2, then Tan2 θ + Cot2 θ =A) 4 B) 2 C) 6 D) 1

Answer»

Correct option is: B) 2

We have Tan \(\theta\) + Cot \(\theta\) = 2

\((tan \, \theta + cot \, \theta)^2 = 2^2 = 4\)

\(tan^2\theta + cot^2\theta + 2 \,tan \, \theta \, cot \, \theta = 4 \) (\(\because\) \((a+b)^2 = a^2+b^2 + 2ab\))

\(tan^2\theta + cot^2\theta + 2 = 4\) (\(\because\) cot \(\theta\)  \(\frac 1{tan \, \theta} =\) tan \(\theta\) cot \(\theta\) =1)

\(tan^2\theta + cot^2\theta = 4-2 =2\)

Correct option is: B) 2



Discussion

No Comment Found