1.

The algebraic expression for `f(x)=tan(sin^(-1)(cos("tan"^(-1)(x)/(2))))` isA. `(2)/(x)`B. `(x)/(2)`C. `(1)/(x)`D. `(2)/(|x|)`

Answer» Correct Answer - D
Let `"tan"^(-1) (x)/(2)=theta`
`rArr tan. theta=(x)/(2)`
`rArr cos("tan"^(-1)(x)/(2))=cos. theta=(2)/(sqrt(4+x^(2)))`
`rArr f(x)=tan["sin"^(-1)(2)/(sqrt(4+x^(2)))]=(2)/(x)`
If `x gt 0`, then `f(x)=tan("tan"^(-1)(2)/(x))=(2)/(x)`
If `x lt 0`, then `f(x)=tan(tan^(-1)((-2)/(x)))=(-2)/(x)`
`rArr f(x)=(2)/(|x|)`


Discussion

No Comment Found