1.

The area of a triangle is 5 sq. units and two of its vertices are (2, 1) and (3, – 2). If the third vertex is (x, y), where y = x + 3, then find the co-ordinates of the third vertex.

Answer»

The area of a triangle with vertex (x1, y1), (x2, y2) and (x3, y3) is

∆ = \(\frac{1}{2}\)|x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2)|

Here, x1 = 2, x2 = 3, x3 = x

y1 = 1, y2 = – 2, y3 = x + 3.

∆ = \(\frac{1}{2}\)|2(−2 − x − 3) + 3(x + 3 − 1) + x(1 + 2)|

⇒ 5 = \(\frac{1}{2}\)|2(−5 − x) + 3 (x + 2) + 3x|

⇒ 10 = |−10 − 2x + 3x + 6 + 3x|

⇒ |4x − 4| = 10

⇒ 4x − 4 = 10 or 4x – 4 = – 10

⇒ x = \(\frac{7}{2}\) or = − \(\frac{3}{2}\)

⇒ y = \(\frac{13}{2}\) ⇒ y = \(\frac{3}{2}\)

∴ (x, y.) = (\(\frac{7}{2}\), \(\frac{13}{2}\)) or (−\(\frac{3}{2}\), \(\frac{3}{2}\)).



Discussion

No Comment Found