1.

The complex numberwhich satisfies the condition `|(i+z)/(i-z)|=1 `lies on`c i r c l e x^2+y^2=1`b. `t h e x-a xi s`c. `t h e y-a xi s`d. `t h e l in e x+y=1`A. Circle `x^(2) + y^(2) = 1`B. the X-axisC. the Y-axisD. the line `x + y = 1`

Answer» Correct Answer - B
Given that, `|(i+x)/(i-z)| = 1`
Let z = x + iy
`:. |(x + i(y+1))/(-x -i(y-1))| = 1 rArr (x^(2) + (y+1)^(2))/(x^(2) + (y-1)^(2)) =1`
`rArr x^(2) + (y+1)^(2)= x^(2)(y-1)^(2)`
`rArr 4y= 0 rArr y = 0`
So, z lies on X-axis (real axis).


Discussion

No Comment Found