1.

The equation 3 sin2 x + 10 cos x – 6 = 0 is satisfied, if (a) x = nπ ± cos–1 \(\big(\frac{1}{3}\big)\) (b)  x = 2nπ ± cos–1 \(\big(\frac{1}{3}\big)\) (c)  x = nπ ± cos–1 \(\big(\frac{1}{6}\big)\) (d)  x = 2nπ ± cos–1 \(\big(\frac{1}{6}\big)\) 

Answer»

Answer: (b)  2nπ ±  cos–1 \(\big(\frac{1}{3}\big)\) 

3 sin2 x + 10 cos x – 6 = 0 

⇒ 3 (1 – cos2 x) + 10 cos x – 6 = 0 

⇒ – 3 cosx + 10 cos x – 3 = 0 

⇒ (cos x – 3) (1 – 3 cos x) = 0 

⇒ cos x = 3 or cos x = \(\frac{1}{3}\)

Since cos x = 3 is inadmissible, therefore, cos x = \(\frac{1}{3}\)

⇒ x = cos–1 \(\big(\frac{1}{3}\big)\) 

The general solution is  

x = 2nπ ±  cos–1 \(\big(\frac{1}{3}\big)\) 



Discussion

No Comment Found