InterviewSolution
Saved Bookmarks
| 1. |
The general expression for half-life period of an nth order reaction `(for n != 1)` isA. `t_(1//2)= (2^(n)-1)/((n-1)[A]_(0)^(n-1)k)`B. `t_(1//2)= (2^(n-1)-1)/((n+1)[A]_(0)^(n-1)k)`C. `t_(1//2)= (2^(n+1)+1)/((n+1)[A]_(0)^(n-1)k)`D. `t_(1//2)= (2^(n-1)-1)/((n-1)[A]_(0)^(n-1)k)` |
|
Answer» Correct Answer - D For zero order reaction `t_(1//2)=([A]_(0))/(2k)` Or `t_(1//2)=(2^(0-1)-1)/((0-1)[A]_(0)^(0-1)k)` ltbr4gt For a second order reaction `t_(1//2)=(1)/(k[A]_(0))` Or, `t_(1//2)=(2^(2-1)=-1)/((2-1)[A]_(0)^(2-1)k)` and so on |
|