1.

The general solution of sin 3x + sin x – 3 sin 2x = cos 3x + cos x – 3 cos 2x is(a)  \(\frac{nπ}{2}+ \frac{π}{8}\) ,  n ∈ I(b)  \(\frac{nπ}{2}- \frac{π}{8}\) ,  n ∈ I (c)  \(nπ+ \frac{π}{8}\) ,  n ∈ I(d)  \(nπ- \frac{π}{8}\) ,  n ∈ I

Answer»

Answer : (a) \(\frac{nπ}{2}+\frac{π}{8}\), n ∈ I

(sin 3x + sin x) – 3 sin 2x = (cos 3x + cos x) – 3 cos 2x 

⇒ 2 sin 2x cos x – 3 sin 2x = 2 cos 2x . cos x – 3 cos 2x 

⇒ sin 2x (2 cos x – 3) = cos 2x (2 cos x – 3) 

⇒ (2 cos x – 3) (sin 2x – cos 2x) = 0 

⇒ (2 cos x – 3) = 0 or (sin 2x – cos 2x) = 0 

⇒ cos x = \(\frac{3}{2}\) or sin 2x = cos 2x 

∵  – 1 ≤ cos x ≤ 1, cos x ≠  \(\frac{3}{2}\)

∴ sin 2x = cos 2x ⇒ tan 2x = 1 

⇒ tan 2x = tan (π/4) 

⇒ 2x = nπ + π/4

x = \(\frac{nπ}{2}+\frac{π}{8}\), n ∈ I



Discussion

No Comment Found